Intermediate depth warming in the tropical Atlantic related to weakened thermohaline circulation: Combining paleoclimate data and modeling results for the last deglaciation

نویسندگان

  • Carsten Rühlemann
  • Stefan Mulitza
  • Gerrit Lohmann
  • André Paul
  • Matthias Prange
  • Gerold Wefer
چکیده

[1] Benthic foraminiferal oxygen isotope ratios from two sediment cores recovered at 426 and 1299 m water depth in the eastern and western tropical Atlantic show that a slowdown of the thermohaline circulation (THC) during Heinrich event H1 and the Younger Dryas was accompanied by rapid and intense warming of intermediate depth waters. Millennial-scale covariations of low paleosalinities in the subpolar North Atlantic with decreased benthic oxygen isotope ratios in the eastern tropical Atlantic throughout the past 10,000 years suggest that THC weakening might be related to middepth warming during the Holocene period as well. Climate model experiments simulating a strong reduction of the THC in the Atlantic Ocean under present-day and glacial conditions reveal that the increase of temperature in the middepth tropical and South Atlantic is a common feature for both climatic states, caused by a reduced ventilation of cold intermediate and deep waters in conjunction with downward mixing of heat from the thermocline. From the similarity of the paleoclimatic records with the model simulations, we infer that the characteristic pattern of temperature change in the Atlantic Ocean related to weakened thermohaline circulation can serve as an indicator of present-day and future THC slowdown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions

[1] Recent paleoproxy records suggest that the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ) varied synchronously with North Atlantic climate over a range of timescales throughout the Holocene and Last Glacial Maximum. We show that the present-day ‘‘meridional mode’’ of atmosphere-ocean variability in the tropical Atlantic is a potentially useful model for understanding th...

متن کامل

Intensification and variability of ocean thermohaline circulation through the last deglaciation

Neodymium isotope ratios in the authigenic ferromanganese oxide component in a southeastern Atlantic core reveal a history of the global overturning circulation intensity through the last deglaciation. From a minimum during the Last Glacial Maximum (LGM), North Atlantic Deep Water (NADW) began to strengthen between 18 and 17 kyr cal. BP, approximately 2000–3000 years before the Bølling warming....

متن کامل

The glacial thermohaline circulation: Stable or unstable?

[1] The stability of the glacial thermohaline circulation (THC) with respect to North Atlantic freshwater input is examined using a global ocean general circulation model. It is found that the quasi-equilibrium hysteresis behaviour is much less pronounced under glacial conditions than under present-day conditions, and the existence of multiple equilibria requires an anomalous freshwater inflow....

متن کامل

Response of the thermohaline circulation to cold climates

[1] A coupled atmosphere-ocean-sea ice-land surface-ice sheet model of intermediate complexity, the so-called McGill Paleoclimate Model, is employed to study the response of the thermohaline circulation (THC) to various global climate coolings, which are realized by increasing the present-day planetary emissivity to various values. Generally, it is found that the response of the THC to global c...

متن کامل

Rates of thermohaline recovery from freshwater pulses in Modern, Last Glacial Maximum and Greenhouse Warming Climates

Recovery rates of the thermohaline circulation after a freshwater pulse in the North Atlantic vary considerably depending on the background climate, as demonstrated in the Community Climate System Model. The recovery is slowest in a Last Glacial Maximum (LGM) climate, fastest in a modern climate, and intermediate between the two in a greenhouse warming (4XCO2) climate. Previously proposed mecha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004